Abstract:Remote sensing analysis is a crucial tool for monitoring the extent of mine waste surfaces and their mineralogy in countries with a long mining history, such as South Africa, where gold and platinum have been produced for over 90 years. These mine waste sites have the potential to contain problematic trace element species (e.g., U, Pb, Cr). In our research, we aim to combine the mapping and monitoring capacities of multispectral and hyperspectral spaceborne sensors. This is done to assess the potential of existing multispectral and hyperspectral spaceborne sensors (OLI and Hyperion) and future missions, such as Sentinel-2 and EnMAP (Environmental Mapping and Analysis Program), for mapping the spatial extent of these mine waste surfaces. For this task we propose a new index, termed the iron feature depth (IFD), derived from Landsat-8 OLI data to map the 900-nm absorption feature as a potential proxy for monitoring the spatial extent of mine waste. OLI was chosen, because it represents the most suitable sensor to map the IFD over large areas in a multi-temporal manner due to its spectral band layout; its (183 km × 170 km) scene size and its revisiting time of 16 days. The IFD is in good agreement with primary OPEN ACCESS Remote Sens. 2014, 6 6791 and secondary iron-bearing minerals mapped by the Material Identification and Characterization Algorithm (MICA) from EO-1 Hyperion data and illustrates that a combination of hyperspectral data (EnMAP) for mineral identification with multispectral data (Sentinel-2) for repetitive area-wide mapping and monitoring of the IFD as mine waste proxy is a promising application for future spaceborne sensors. A maximum, absolute model error is used to assess the ability of existing and future multispectral sensors to characterize mine waste via its 900-nm iron absorption feature. The following sensor-signal similarity ranking can be established for spectra from gold mining material: EnMAP 100% similarity to the reference, ALI 97.5%, Sentinel-2 97%, OLI and ASTER 95% and ETM+ 91% similarity.