Abstract:Remote sensing analysis is a crucial tool for monitoring the extent of mine waste surfaces and their mineralogy in countries with a long mining history, such as South Africa, where gold and platinum have been produced for over 90 years. These mine waste sites have the potential to contain problematic trace element species (e.g., U, Pb, Cr). In our research, we aim to combine the mapping and monitoring capacities of multispectral and hyperspectral spaceborne sensors. This is done to assess the potential of existing multispectral and hyperspectral spaceborne sensors (OLI and Hyperion) and future missions, such as Sentinel-2 and EnMAP (Environmental Mapping and Analysis Program), for mapping the spatial extent of these mine waste surfaces. For this task we propose a new index, termed the iron feature depth (IFD), derived from Landsat-8 OLI data to map the 900-nm absorption feature as a potential proxy for monitoring the spatial extent of mine waste. OLI was chosen, because it represents the most suitable sensor to map the IFD over large areas in a multi-temporal manner due to its spectral band layout; its (183 km × 170 km) scene size and its revisiting time of 16 days. The IFD is in good agreement with primary OPEN ACCESS Remote Sens. 2014, 6 6791 and secondary iron-bearing minerals mapped by the Material Identification and Characterization Algorithm (MICA) from EO-1 Hyperion data and illustrates that a combination of hyperspectral data (EnMAP) for mineral identification with multispectral data (Sentinel-2) for repetitive area-wide mapping and monitoring of the IFD as mine waste proxy is a promising application for future spaceborne sensors. A maximum, absolute model error is used to assess the ability of existing and future multispectral sensors to characterize mine waste via its 900-nm iron absorption feature. The following sensor-signal similarity ranking can be established for spectra from gold mining material: EnMAP 100% similarity to the reference, ALI 97.5%, Sentinel-2 97%, OLI and ASTER 95% and ETM+ 91% similarity.
Abstract:In this study, an in situ application for identifying neodymium (Nd) enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor). Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1) reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2) enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution). To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a OPEN ACCESSRemote Sens. 2015, 7 5161 minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.