Summary 1.Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. 2. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. 3. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. 4. Strong, significant concordance (RV = 0Á597; P < 0Á0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. 5. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). 6. The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (-23.7%), leaf production (-51.8%), and reproduction (-24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant-plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in myrmecophytic plants.
Major hypotheses on the adaptive significance of insect gall formation are reviewed: nonadaptive, plant protection, mutual benefit, nutrition, microenvironment, and enemy hypotheses. We evaluate the validity of each, and find the first three to be without merit because galls clearly have adaptive features for the insect, but few if any for the plant, and the galler has negative impact on the plant, making the relationship parasitic. Predictions are developed to enable testing of hypotheses, and tests are discussed. Nutrition and microenvironment hypotheses are supported, while the enemy hypothesis remains with several uncertain issues to be resolved. The evolution of the galling habit has followed two pathways, one via mining plant tissues and the other from sedentary external herbivores that then modify plant growth. In each route the sequence of selective factors was probably different, but improved protection from hygrothermal stress and improved nutrition are of pr~mary importance, and protection from enemies probably reinforced the galling habit. KEY WORDS evolution. selection 'f';
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.