“…As a result, many studies employed Pre-trained multilingual word embeddings like FastText ( Bigoulaeva, Hangya & Fraser, 2021 ), MUSE ( Pamungkas & Patti, 2019 ; Deshpande, Farris & Kumar, 2022 ; Aluru et al, 2020 ; Bigoulaeva, Hangya & Fraser, 2021 ), or LASER ( Deshpande, Farris & Kumar, 2022 , Aluru et al, 2020 , Pelicon et al, 2021a ), and Vitiugin, Senarath & Purohit (2021) . Moreover, most of the research studies has focused on the use of pre-trained language models LLMs (basically as classifiers): BERT ( Vashistha & Zubiaga, 2021 , zahra El-Alami, Ouatik El Alaoui & En Nahnahi, 2022 ; Zia et al, 2022 ; Pamungkas, Basile & Patti, 2021a ), AraBERT (for Arabic data) ( zahra El-Alami, Ouatik El Alaoui & En Nahnahi, 2022 ), CseBERT (for English, Croatian and Slovenian data) ( Pelicon et al, 2021b ), as well as multilingual BERT models: ( Shi et al, 2022 ; Bhatia et al, 2021 ; Deshpande, Farris & Kumar, 2022 ; Aluru et al, 2020 ; zahra El-Alami, Ouatik El Alaoui & En Nahnahi, 2022 ; De la Peña Sarracén & Rosso, 2022 ; Tita & Zubiaga, 2021 ; Eronen et al, 2022 ; Ranasinghe & Zampieri, 2021a ; Ghadery & Moens, 2020 ; Pelicon et al, 2021b ; Awal et al, 2024 ; Montariol, Riabi & Seddah, 2022 ; Ahn et al, 2020a ; Bigoulaeva et al, 2022 , 2023 ; Pamungkas, Basile & Patti, 2021a ; Pelicon et al, 2021a ), DistilmBERT model ( Vitiugin, Senarath & Purohit, 2021 ), and RoBERTa ( Zia et al, 2022 ).…”