The Bacilus subtilis spore coat is composed of at least 15 polypeptides plus an insoluble protein fraction arranged in three morphological layers. The insoluble fraction accounts for about 30% of the coat protein and is resistant to solubilization by a variety of reagents, implying extensive cross-linking. A dodecapeptide was purified from this fraction by formic acid hydrolysis and reverse-phase high-performance liquid chromatography. This peptide was sequenced, and a gene designated cotX was cloned by reverse genetics. The cotX gene encoding the dodecapeptide at its amino end was clustered with four other genes designated cotV, cotW, cotY, and cotZ. These genes were mapped to 1070 between thiB and metA on the B. subtilis chromosome. The deduced amino acid sequences of the cotY and cotZ genes are very similar. Both proteins are cysteine rich, and CotY antigen was present in spore coat extracts as disulfide cross-linked multimers. There was little CotX antigen in the spore coat soluble fraction, and deletion of this gene resulted in a 30%o reduction in the spore coat insoluble fraction. Spores produced by strains with deletions of the cotX, cotYZ, or cotXYZ genes were heat and lysozyme resistant but readily clumped and responded more rapidly to germinants than did spores from the wild type. In electron micrographs, there was a less densely staining outer coat in spores produced by the cotX null mutant, and those produced by a strain with a deletion of the cotXYZ genes had an incomplete outer coat. These proteins, as part of the coat insoluble fraction, appear to be localized to the outer coat and influence spore hydrophobicity as well as the accessibility of germinants.