In the articles included in this volume, one feels a strong frustration among the writers with the slow course of therapeutics development for Alzheimer's disease and with the clinical failure of targeted therapeutic agents despite substantial progress in our understanding of the biology and biochemistry of the disease.
Keywords Master regulator . Interactome . Human neuronsTo date, approaches to Alzheimer disease (AD) therapeutics have followed 2 main avenues. The first addresses neurotransmitter deficits in the early phases of the disease. This approach has led to the handful of AD drugs currently on the market that provide short-term symptomatic improvement but do not alter the course of the disease. The second approach has been directed at decreasing the burden of beta-amyloid (Aβ) in the brain by active or passive immunization or by inhibiting activity of β-or γ-secretases. To date, none of the approaches in this second class has been successful, although trials on β-or γ-secretase (BACE) inhibitors are ongoing.The lack of overt success has been even more frustrating because, in transgenic (Aβ-overproducing) mouse models of AD, Aβ-lowering approaches, as well as treatments with small molecules and biologics, have been successful in blocking memory loss, restoring memory function, reversing dendritic spine alterations, and reversing inhibition of longterm potentiation [1][2][3]. Indeed, as animal models only partially recapitulate the human AD phenotype and because human brain tissue is available only postmortem, translation of preclinical findings to the clinics has been fraught with difficulties.For instance, the characteristic intraneuronal neurofibrillary tangles and extensive neuronal loss observed in human AD are absent in mouse models of the disease. This dichotomy suggests that mouse models replicate only presymptomatic AD stages, while clinical manifestations appear only after neuronal loss becomes irreversible. This hypothesis is directly addressed by ongoing trials, where individuals with genetic mutations that predispose to early AD onset are being treated with Aβ-targeted therapies to assess whether presymptomatic treatment may block an otherwise certain disease progression. Beyond Aβ-targeted therapies, novel approaches are being developed based on inhibition of tau phosphorylation and aggregation, and on blockade of synaptic loss, leveraging "candidate" target approaches derived from human and animal data. Unfortunately, it has so far been impossible to discern whether "candidate genes" represent causal determinants of the disease process or are the downstream result of them.In this review, we will discuss the potential of adapting integrative systems biology approaches that have already proven extremely valuable in understanding multiple cancer related phenotypes to human neurodegenerative diseases.