This paper proposes an octagonal layout for enhancing the ability of resisting electromagnetic interference in Through Silicon Via (TSV) array. The influential factors of crosstalk noise between TSVs are investigated, including the TSV pitch, signal and ground TSVs location, and signal types (single-end and differential signal) by using a coplanar wave guide (CPW) testing structure. These results, based on traditional TSV arrays, show that a staggered TSV layout with differential signals had lower crosstalk noise. On this basis, the octagonal layout of TSV array is proposed and we show that it has obvious superiority in reducing occupied silicon area and crosstalk noise. Compared with traditional TSV arrays, the crosstalk noise is almost reduced by 44%. In order to further reduce the silicon area occupied by TSV without worsening crosstalk noise, the new division TSV structure is proposed in which a large TSV was substituted by four smaller TSVs. The area occupied by a single TSV and TSV array are both reduced by 60% without decreasing signal integrity when the regular TSV in the octagonal layout are replaced by a new TSV structure.