Abstract:Crumpled reduced graphene oxide--amine--titanium dioxide nanocomposites (CGOATI) were synthesized by an one--step aerosol technique to enable simultaneous carbon dioxide (CO2) adsorption and photoreduction. Graphene oxide (GO), chemically modified by ethylenediamine (EDA), was crumpled using an aerosol process, encapsulating TiO2 nanoparticles to form core--shell nanostructures. The three--dimensional (3D) structure largely prevented the crumpled graphene nanosheets from restacking by minimizing π--π interacti… Show more
“…Apparent quantum efficiencies (AQE) for CO production over 3 wt% LDH-DS@TiO 2 -NT are around 0.26% and 0.09% under 365 nm (using a UV band pass filter) and 475 nm (visible band pass filter) irradiation (Table S4, Supporting Information), respectively. These AQEs are much higher than corresponding values of <0.1% (UV) for P25@ CoAl-LDH [27] or reduced graphene oxide-amine-titanium dioxide nanocomposites [49] or ZrOCo II −IrO x SBA-15 [50] wafer or Pt-TiO 2 [51] heterogeneous photocatalysts. They are also much greater than many "high performance" photocatalysts such as TiO 2 nanofibers (0.036%) [52] and SrNb 2 O 6 plates (0.065%) [51] under UV irradiation, and Co 3 O 4 hexagonal platelets under visible light [53] (0.069%, wherein a visible light sensitizer [Ru(bpy) 3 ]Cl 2 and hole scavenger triethanolamine (TEOA) were also required).…”
Section: Photocatalytic Co 2 Reduction Over Coal-ldh@tio 2 Nanocomposmentioning
Photocatalytic reduction offers an attractive route for CO2 utilization as a chemical feedstock for solar fuels production but remains challenging due to the poor efficiency, instability, and/or toxicity of current catalyst systems. Delaminated CoAl‐layered double hydroxide nanosheets (LDH‐DS) combined with TiO2 nanotubes (NTs) or nanoparticles (NPs) are promising nanocomposite photocatalysts for CO2 reduction. Heterojunction formation between visible light absorbing delaminated CoAl nanosheets and UV light absorbing TiO2 nanotubes greatly enhances interfacial contact between both high aspect ratio components relative to their bulk counterparts. The resulting synergic interaction confers a significant improvement in photoinduced charge carrier separation, and concomitant aqueous phase CO2 photocatalytic reduction, in the absence of a sacrificial hole acceptor. CO productivity for a 3 wt% LDH‐DS@TiO2‐NT nanocomposite of 4.57 µmol gcat‐1 h‐1 exhibits a tenfold and fivefold increase over that obtained for individual TiO2 NT and delaminated CoAl‐LDH components respectively and is double that obtained for 3 wt% bulk‐LDH@TiO2‐NT and 3 wt% LDH‐DS@TiO2‐NP catalysts. Synthesis of delaminated LDH and metal oxide nanocomposites represents a cost‐effective strategy for aqueous phase CO2 reduction.
“…Apparent quantum efficiencies (AQE) for CO production over 3 wt% LDH-DS@TiO 2 -NT are around 0.26% and 0.09% under 365 nm (using a UV band pass filter) and 475 nm (visible band pass filter) irradiation (Table S4, Supporting Information), respectively. These AQEs are much higher than corresponding values of <0.1% (UV) for P25@ CoAl-LDH [27] or reduced graphene oxide-amine-titanium dioxide nanocomposites [49] or ZrOCo II −IrO x SBA-15 [50] wafer or Pt-TiO 2 [51] heterogeneous photocatalysts. They are also much greater than many "high performance" photocatalysts such as TiO 2 nanofibers (0.036%) [52] and SrNb 2 O 6 plates (0.065%) [51] under UV irradiation, and Co 3 O 4 hexagonal platelets under visible light [53] (0.069%, wherein a visible light sensitizer [Ru(bpy) 3 ]Cl 2 and hole scavenger triethanolamine (TEOA) were also required).…”
Section: Photocatalytic Co 2 Reduction Over Coal-ldh@tio 2 Nanocomposmentioning
Photocatalytic reduction offers an attractive route for CO2 utilization as a chemical feedstock for solar fuels production but remains challenging due to the poor efficiency, instability, and/or toxicity of current catalyst systems. Delaminated CoAl‐layered double hydroxide nanosheets (LDH‐DS) combined with TiO2 nanotubes (NTs) or nanoparticles (NPs) are promising nanocomposite photocatalysts for CO2 reduction. Heterojunction formation between visible light absorbing delaminated CoAl nanosheets and UV light absorbing TiO2 nanotubes greatly enhances interfacial contact between both high aspect ratio components relative to their bulk counterparts. The resulting synergic interaction confers a significant improvement in photoinduced charge carrier separation, and concomitant aqueous phase CO2 photocatalytic reduction, in the absence of a sacrificial hole acceptor. CO productivity for a 3 wt% LDH‐DS@TiO2‐NT nanocomposite of 4.57 µmol gcat‐1 h‐1 exhibits a tenfold and fivefold increase over that obtained for individual TiO2 NT and delaminated CoAl‐LDH components respectively and is double that obtained for 3 wt% bulk‐LDH@TiO2‐NT and 3 wt% LDH‐DS@TiO2‐NP catalysts. Synthesis of delaminated LDH and metal oxide nanocomposites represents a cost‐effective strategy for aqueous phase CO2 reduction.
“…[130] Surface functional groups (such as hydroxyl radicals,a mines) play an important role in the activity and selectivity of ar eaction. In this regard, amine functionalization favors the formation of alkylammonium carbamate, which converts into carbonate by hydrolysis [131] and possibly further to ac arboxyl radical. Such ar adical subsequently dissociates into CO under irradiation with UV light.…”
The transformation of CO into fuels and chemicals by photocatalysis is a promising strategy to provide a long-term solution to mitigating global warming and energy-supply problems. Achievements in photocatalysis during the last decade have sparked increased interest in using sunlight to reduce CO . Traditional semiconductors used in photocatalysis (e.g. TiO ) are not suitable for use in natural sunlight and their performance is not sufficient even under UV irradiation. Some two-dimensional (2D) materials have recently been designed for the catalytic reduction of CO . These materials still require significant modification, which is a challenge when designing a photocatalytic process. An overarching aim of this Review is to summarize the literature on the photocatalytic conversion of CO by various 2D materials in the liquid phase, with special attention given to the development of novel 2D photocatalyst materials to provide a basis for improved materials.
“…[126] Allerdings kçnnen metalldotierte Photokatalysatoren während des Katalysezyklus zersetzt werden, was zu einer Auswaschung des dotierenden Metalls und einer stufenweisen Deaktivierung führt. In diesem Zusammenhang fçrdert eine Funktionalisierung durch Amine die Bildung von Alkylammoniumcarbamat, das über Hydrolyse zu Carbonat [131] und mçglicherweise weiter zu einem Carboxyl-Radikal reagiert. Bandkantenpositionen der MXene [120] und einschichtigen Metall-Phosphor-Trichalkogeniden (MPX 3 )b ezüglich der Potentialniveaus der CO 2 -Reduktion und Wasseroxidation.…”
Section: Oberflächenmodifizierungenunclassified
“…[130] Funktionelle Oberflächengruppen (wie Hydroxyl-Radikale,Amine) spielen eine wichtige Rolle, wenn es um die Aktivitätund Selektivitätbei einer Reaktion geht. In diesem Zusammenhang fçrdert eine Funktionalisierung durch Amine die Bildung von Alkylammoniumcarbamat, das über Hydrolyse zu Carbonat [131] und mçglicherweise weiter zu einem Carboxyl-Radikal reagiert. Ein solches Radikal wird unter UV-Bestrahlung daraufhin zu CO dissoziiert.…”
Die Umwandlung von CO2 in Treibstoffe und Chemikalien mithilfe der Photokatalyse ist eine vielversprechende Methode, um die Probleme der globalen Erwärmung und Energieversorgung nachhaltig zu lösen. Erfolge im Bereich der Photokatalyse während des letzten Jahrzehnts haben verstärktes Interesse an der Nutzung des Sonnenlichts zur Reduktion von CO2 hervorgerufen. Traditionelle Halbleiter in der Photokatalyse (z. B. TiO2) sind für die Anwendung in natürlichem Sonnenlicht nicht geeignet und sogar unter UV‐Bestrahlung nicht effizient genug. Kürzlich wurden einige zweidimensionale (2D) Materialien für die katalytische CO2‐Reduktion entwickelt. Diese Materialien müssen noch erheblich verbessert werden, was eine Herausforderung für die Entwicklung photokatalytischer Prozesse darstellt. Hier wird die Literatur über die photokatalytische CO2‐Umwandlung mit 2D‐Materialien in der Flüssigphase zusammengefasst, um eine Grundlage für die Suche nach verbesserten Materialien zu schaffen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.