Cryogenic computing, which runs a computer device at an extremely low temperature, is promising thanks to its significant reduction of wire resistance as well as leakage current. Recent studies on cryogenic computing have focused on various architectural units including the main memory, cache, and CPU core running at 77K. However, little research has been conducted to fully exploit the fast cryogenic wires, even though the slow wires are becoming more serious performance bottleneck in modern processors. In this paper, we propose a CPU microarchitecture which extensively exploits the fast wires at 77K. For this goal, we first introduce our validated cryogenic-performance models for the CPU pipeline and network on chip (NoC), whose performance can be significantly limited by the slow wires. Next, based on the analysis with the models, we architect CryoSP and CryoBus as our pipeline and NoC designs to fully exploit the fast wires. Our evaluation shows that our cryogenic computer equipped with both microarchitectures achieves 3.82 times higher system-level performance compared to the conventional computer system thanks to the 96% higher clock frequency of CryoSP and five times lower NoC latency of CryoBus.
CCS CONCEPTS• Computer systems organization → Superscalar architectures; Pipeline computing; Multicore architectures.