The results on crystallization of glasses of the cordierite composition, synthesized under the influence of concentrated radiant flux of different densities, are presented. Synthesis was carried out using a solar furnace or a solar simulator, wherein Xenon lamps of 10 kW power serve as a heat source. We studied glasses of the following stoichiometric composition 2MgO: 2Al 2 O 3 : 5SiO 2 without a catalyst and with TiO 2 as a catalyst. The initial raw materials were MgO, Al 2 O 3 and quartz-kaolinite-pyrophyllite rock as a main source of SiO 2 . The natures of phase transitions in the samples obtained are studied using the X-ray analysis (DRON-UM-1) and the differential-thermal method (Derivatograph Q-1500 D). The absorption spectra are obtained on spectrophotometer SF-56. A comparison of the phase composition of the crystallized samples shows that the crystallization of μ-cordierite and the transition of μ-cordierite to α-cordierite in glasses, synthesized using a Xenon lamp, occurs at lower temperatures than those synthesized using solar radiation, provided the same conditions of synthesis and annealing. Besides of this, in glasses containing TiO 2 , the content of Ti 3+ increases, and a decay of the concomitant phase, magnesium-aluminum-titanate, is activated at annealing temperatures above 1200°C. The differences in the character of the phase formation affect the activity of glass powders to sintering.