Scintillation detection has attracted great interest in nuclear medicine, nuclear radiation detection, high-energy physics, and non-destructive inspection. The elpasolite crystals with Ce3+ dopants are promising for these endeavors due to their modest light yield and extremely good proportionality when excited by the gamma ray. Moreover, the 6Li and 35Cl isotopes in elpasolite crystals endow them with excellent neutron detection capability. These features allow not only a high energy resolution but also a high detection sensitivity. The elpasolite scintillators also enable the precisely dual detection of gamma/neutron signals through pulse height discrimination (PHD) or pulse shape discrimination (PSD). In this work, we review recent investigations on using the typical elpasolite scintillators, including Ce3+-doped Cs2LiYCl6 (CLYC), Cs2LiLaCl6 (CLLC), and Cs2LiLaBr6 (CLLB), for the monitoring of gamma rays and neutrons. The scintillation properties, detection mechanism, and elpasolite crystal structure are also discussed with the aim of improving high-energy ray detection ability.