Hantaviruses are zoonotic pathogens found in parts of Europe, Asia, South America, and North America, which can cause renal and respiratory failure with fatality rates up to 40%. There are currently no FDA-approved vaccines or therapeutics for hantavirus-related diseases; however, it is evident that a robust neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on the neutralizing epitopes that exist on the hantavirus antigenic glycoproteins, Gn and Gc, and sites important for the design of effective therapeutics and vaccines. We provide a thorough summary of the hantavirus field from an immunological perspective. In particular, we discuss our current structural knowledge of antigenic proteins Gn and Gc, identification of B cell neutralizing epitopes, previously isolated monoclonal antibodies and their cross-reactivity between different hantavirus strains, and current developments toward vaccines and therapeutics. We conclude with some outstanding questions in the field and emphasize the need for additional studies of the human antibody response to hantavirus infection.
IMPORTANCE Hantaviruses are pathogens that sometimes pass from animals to humans, and they are found in parts of Europe, Asia, and North and South America. When human infection occurs, these viruses can cause kidney or lung failure, and as many as 40% of infected people die. Currently, there are no vaccines or therapeutics for hantavirus-related diseases available. A first step in developing prevention measures is determining what type of immune response is protective. Increasingly it has become clear that the induction of a type of response called a neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on what features on the surface of hantaviruses are recognized by the immune system. Here, we review the current state of knowledge of this information, which is critical for the design of effective therapeutics and vaccines.