Proteasome inhibition is highly effective as a treatment for multiple myeloma, and recently carfilzomib was granted US FDA approval for the treatment of relapsed and refractory multiple myeloma. Here, we report the X-ray crystal structure of the human constitutive 20S proteasome with and without carfilzomib bound at 2.9 and 2.6 Å, respectively. Our data indicate that the S3 and S4 binding pockets play a pivotal role in carfilzomib's selectivity for chymotrypsin-like sites. Structural comparison with the mouse immunoproteasome crystal structure reveals amino acid substitutions that explain carfilzomib's slight preference for chymotrypsin-like subunits of constitutive proteasomes. In addition, comparison of the human proteasome:carfilzomib complex with the mouse proteasome:PR-957 complex reveals new details that explain why PR-957 is selective for immunoproteasomes. Together, the data presented here support the design of inhibitors for either constitutive or immunoproteasomes, with implications for the treatment of cancers as well as autoimmune and neurodegenerative diseases.
Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We leveraged chemoproteomic profiling and structure-based design to develop the first selective,
in vivo
-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.
Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation.
Doublecortin-like kinase 1 (DCLK1) is a serine/ threonine kinase that is overexpressed in gastrointestinal cancers, including esophageal, gastric, colorectal, and pancreatic cancers. DCLK1 is also used as a marker of tuft cells, which regulate type II immunity in the gut. However, the substrates and functions of DCLK1 are understudied. We recently described the first selective DCLK1/2 inhibitor, DCLK1-IN-1, developed to aid the functional characterization of this important kinase. Here we describe the synthesis and structure−activity relationships of 5,11-dihydro-6Hbenzo[e]pyrimido [5,4-b][1,4]diazepin-6-one DCLK1 inhibitors, resulting in the identification of DCLK1-IN-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.