Self-assembly offers a powerful way to control the complexity and hierarchy of nanoscale materials, and promises to create a diverse range of emergent properties. Successful syntheses that allow a delicate structural design of building units play an important role. However, as can be learned from many cellular processes and functions, coself-assembly using logically chosen additives should be equally effective in designing self-assembly. Herein I show that, translated from the dynamic nanoscale assemblies in cell membranes known as lipid rafts, coself-assembly of 1-decanol into cetyltrimethylammonium chloride micelles for the assembly of lyotropic liquid crystals generates new structural complexity and hierarchy, and a surprising property that is emerging from it. Designing the intermolecular forces in the way that cholesterol interacts with sphingolipids promotes the synergistic balance between the flexibility and rigidity, and the unique molecular recognition for silicic acid, followed by the micelle coalescence. This very much resembles the assembly process of the lipid rafts in cell membranes and triggers orders of magnitude of sharp increases in X-ray diffraction intensity. The analysis of the diffraction patterns shows that the structural order of these liquid crystals matches that of solid crystals, often of single crystals. Furthermore, the assembly of the liquid crystals promotes a substantial increase in the condensation rate of silicic acids by guiding them to form a silicate trimer along the surface of micelles. This very much resembles the role of the lipid rafts that sharply increases the reaction rate of biomolecules by guiding them to form discrete species along the surface of membranes. This finding demonstrates that it is possible to translate the key features of cellular processes and functions into artificial self-assembling systems of our choice using the building units that are readily available, thus creating novel soft materials.