One attractive approach to increase the aqueous solubility and thus the bioavailability of poorly soluble drugs is to formulate them in their amorphous state since amorphous compounds generally exhibit higher apparent solubilities than their crystalline counterparts. In the current work, mesoporous magnesium carbonate was used to stabilise the amorphous state of the model substance ibuprofen. Crystallisation of the drug was completely supressed in the formulation, resulting in both a higher apparent solubility and a three times faster dissolution rate of the drug where the drug release was shown to be diffusion controlled. It was also shown that the formulation is stable for at least three months when stored at 75% relative humidity. The simple synthesis together with a high loading capacity and narrow pore size distribution of the mesoporous magnesium carbonate is foreseen to offer great advantages in formulations of poorly soluble drugs.
We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ∼ 800 m2 g−1, substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ∼50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.
The possibility to fast-load biomimetic hydroxyapatite coatings on surgical implant with the antibiotics Amoxicillin, Gentamicin sulfate, Tobramycin and Cephalothin has been investigated in order to develop a multifunctional implant device offering sustained local anti-bacterial treatment and giving the surgeon the possibility to choose which antibiotics to incorporate in the implant at the site of surgery. Physical vapor deposition was used to coat titanium surfaces with an adhesion enhancing gradient layer of titanium oxide having an amorphous oxygen poor composition at the interface and a crystalline bioactive anatase TiO(2) composition at the surface. Hydroxyapatite (HA) was biomimetically grown on the bioactive TiO(2) to serve as a combined bone in-growth promoter and drug delivery vehicle. The coating was characterized using scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The antibiotics were loaded into the HA coatings via soaking and the subsequent release and antibacterial effect were analyzed using UV spectroscopy and examination of inhibition zones in a Staphylococcus aureus containing agar. It was found that a short drug loading time of 15 min ensured antibacterial effects after 24 h for all antibiotics under study. It was further found that the release processes of Cephalothin and Amoxicillin consisted of an initial rapid drug release that varied unpredictably in amount followed by a reproducible and sustained release process with a release rate independent of the drug loading times under study. Thus, implants that have been fast-loaded with drugs could be stored for ~10 min in a simulated body fluid after loading to ensure reproducibility in the subsequent release process. Calculated release rates and measurements of drug amounts remaining in the samples after 22 h of release indicated that a therapeutically relevant dose could be achieved close to the implant surface for about 2 days. Concluding, the present study provides an outline for the development of a fast-loading slow-release surgical implant kit where the implant and the drug are separated when delivered to the surgeon, thus constituting a flexible solution for the surgeon by offering the choice of quick addition of antibiotics to the implant coating based on the patient need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.