Healthcare acquired infections are a major human health
problem,
and are becoming increasingly troublesome with the emergence of drug
resistant bacteria. Engineered surfaces that reduce the adhesion,
proliferation, and spread of bacteria have promise as a mean of preventing
infections and reducing the use of antibiotics. To address this need,
we created a flexible plastic wrap that combines a hierarchical wrinkled
structure with chemical functionalization to reduce bacterial adhesion,
biofilm formation, and the transfer of bacteria through an intermediate
surface. These hierarchical wraps were effective for reducing biofilm
formation of World Health Organization-designated priority pathogens
Gram positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram negative Pseudomonas aeruginosa by 87 and 84%, respectively. In addition, these surfaces remain
free of bacteria after being touched by a contaminated surface with
Gram negative E. coli. We showed that these properties
are the result of broad liquid repellency of the engineered surfaces
and the presence of reduced anchor points for bacterial adhesion on
the hierarchical structure. Such wraps are fabricated using scalable
bottom-up techniques and form an effective cover on a variety of complex
objects, making them superior to top-down and substrate-specific surface
modification methods.
The ultrastructure of bone has been widely debated, in part due to limitations in visualizing nanostructural features over relevant micrometer length scales. Here, we employ the high resolving power and compositional contrast of high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) to investigate new features in human bone with nanometer resolution over microscale areas. Using focused ion beam (FIB)-milled sections that span an area of 50 μm, we have shown how most of the mineral of cortical human osteonal bone occurs in the form of long, thin polycrystalline plates (mineral lamellae, MLs) which are either flat or curved to wrap closely around collagen fibrils. Close to the collagen fibril (< 20 nm), the radius of curvature matches that of the fibril diameter, while at greater distances, MLs form arcs with much larger radii of curvature. In addition, stacks of closely packed planar (uncurved) MLs occur between fibrils. The curving of mineral lamellae both around and between the fibrils would contribute to the strength of bone. At a larger scale, rosette-like clusters of fibrils are noted for the first time, arranged in quasi-circular arrays that define tube-like structures in alternating osteonal lamellae. At the boundary between adjacent osteonal lamellae, the orientation of fibrils and surrounding mineral lamellae changes abruptly, resembling the "orthogonal" patterns identified by others (Reznikov et al. in Acta Biomater 10:3815-3826, 2014). These features spanning nanometer to micrometer scale have implications for our understanding of bone structure and mechanical integrity.
We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ∼ 800 m2 g−1, substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ∼50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.