The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.The human immunodeficiency viruses HIV-1 and HIV-2 and the related simian immunodeficiency viruses (SIV) cause the destruction of CD4 + lymphocytes in their respective hosts, resulting in the development of acquired immunodeficiency syndromeCorrespondence and requests for materials should be addressed to W. A.H. (wayne@convex.hhmi.columbia.edu).Coordinates have been deposited in the Brookhaven Protein Data Bank (accession code 1gc1) and maybe obtained from the authors.
HHS Public Access
Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript (AIDS) 1,2 . The entry of HIV into host cells is mediated by the viral envelope glycoproteins, which are organized into oligomeric, probably trimeric spikes displayed on the surface of the virion. These envelope complexes are anchored in the viral membrane by the gp41 transmembrane envelope glycoprotein. The surface of the spike is composed primarily of the exterior envelope glycoprotein, gp120, associated by non-covalent interactions with each subunit of the trimeric gp41 glycoprotein complex 3,4 . Comparison of the gp120 sequences of different primate immunodeficiency viruses identified five variable regions (V1-V5) (ref. 5 ). The first four variable regions form surface-exposed loops that contain disulphide bonds at their bases 6 . The conserved gp120 regions form discontinuous structures important for the interaction with the gp41 ectodomain and with the viral receptors on the target cell. Both conserved and variable gp120 regions are extensively glycosylated 6 . The variability and glycosylation of the gp120 surface probably modulate the immunogenicity and antigenicity of the gp120 glycoprotein, which is the main target for neutralizing antibodies elicited during natural infection 7 .Entry of primate immunodeficiency viruses into the host cell involves the binding of the gp120 envelope glycoprotein to the CD4 glycoprotein, which serves as the primary receptor. The gp120 glycoprotein binds to the most amino-terminal of the four immunoglobulin-like domains of CD4. S...