Virus-induced membrane fusion can be subdivided into three phases defined by studies of class I and class II fusion proteins. During Phase I, two membranes are brought into close apposition. Phase II marks the mixing of the outer membrane leaflets leading to formation of a hemifusion intermediate. A fusion pore stably forms and expands in Phase III, thereby completing the fusion process. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins to complete membrane fusion, but none has been defined as class I or II. Therefore, we investigated whether HSV-1-induced membrane fusion occurred following the same general phases as those described for class I and II proteins. In this study we demonstrate that glycoprotein D (gD) and the glycoprotein H and glycoprotein L complex (gHL) mediated lipid mixing indicative of hemifusion. However, content mixing and full fusion required glycoprotein B (gB) to be present along with gD and gHL. Our results indicate that, like class I and II fusion proteins, fusion mediated by HSV-1 glycoproteins occurred through a hemifusion intermediate. In addition, both gB and gHL are probably directly involved in the fusion process. From this, we propose a sequential model for fusion via HSV-1 glycoproteins whereby gD is required for Phase I, gHL is required for Phase II, and gB is required for Phase III. We further propose that glycoprotein H and gB are likely to function sequentially to promote membrane fusion in other herpesviruses such as Epstein-Barr virus and human herpesvirus 8.lipid transfer ͉ membrane fusion ͉ fluorescence microscopy S tudies using class I and class II fusion proteins have demonstrated that virus-induced membrane fusion can be subdivided into three phases (1, 2). Phase I involves bringing opposing membranes into close proximity through a viral glycoprotein binding a cellular receptor. Phase II involves the initiation of lipid mixing between the two apposed membranes and is completed when the outer membrane leaflets are mixed to form an intermediate called hemifusion. Phase III begins when the inner membrane leaflets are mixed and continues the pore formation and expansion. The completion of Phase III signifies the completion of the fusion process. The three phases of membrane fusion (close apposition, hemifusion, and complete fusion) are useful to characterize functions of viral glycoproteins in the fusion process (1, 3, 4). Fusion proteins that have Phase I function bring membranes in close apposition and ultimately result in the initiation of the fusion process. Fusion proteins that have Phase II function are capable of mixing outer membrane leaflets leading to hemifusion. Phase III fusion proteins are capable of forming and expanding a fusion pore. For many viruses, one or two fusion proteins can carry out all phases of membrane fusion. The fusion process has yet to be characterized for viruses that require more than two fusion glycoproteins, and a major issue is whether multiple glycoproteins mediate fusion through a hemifusion intermediate.Herpes simplex ...