Summary
ISG15 is a ubiquitin-like protein that functions in innate immunity both as an intracellular protein modifier and as an extracellular signaling molecule that stimulates IFN-γ secretion. The extracellular function, important for resistance to mycobacterial disease, has remained biochemically uncharacterized. We have established an NK-92 cell-based assay for IFN-γ release, identified residues critical for ISG15 signaling, and identified the cell surface receptor as LFA-1 (CD11a/CD18; αLβ2 integrin). LFA-1 inhibition blocked IFN-γ secretion, splenocytes from CD11a−/− mice did not respond to ISG15, and ISG15 bound directly to the αI domain of CD11a in vitro. ISG15 also enhanced secretion of IL-10, indicating a broader role for ISG15 in cytokine signaling. ISG15 engagement of LFA-1 led to activation of SRC family kinases (SFKs) and SFK inhibition blocked cytokine secretion. These findings establish the molecular basis of the extracellular function of ISG15 and the initial “outside-in” signaling events that drive ISG15-dependent cytokine secretion.