PTSD occurs in a significant percentage of subjects who recover from SARS, and the occurrence of PTSD predicts persistent psychological distress and diminished social functioning in the 4 years after SARS treatment.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Since the five-year survival rate is less than 5%, pancreatic ductal adenocarcinoma (PDAC) remains the 4th cause of cancer-related death. Although PDAC has been repeatedly researched in recent years, it is still predicted to be the second leading cause of cancer death by year 2030. In our study, the differentially expressed genes in dataset GSE62452 were used to construct a co-expression network by WGCNA. The yellow module related to grade of PDAC was screened. Combined with co-expression network and PPI network, 36 candidates were screened. After survival and regression analysis by using GSE62452 and TCGA dataset, we identified 10 real hub genes (CCNA2, CCNB1, CENPF, DLGAP5, KIF14, KIF23, NEK2, RACGAP1, TPX2 and UBE2C) tightly related to progression of PDAC. According to Oncomine database and The Human Protein Atlas (HPA), we found that all real hub genes were overexpressed in pancreatic carcinoma compared with normal tissues on transcriptional and translational level. ROC curve was plotted and AUC was calculated to distinguish recurrent and non-recurrent PDAC and every AUC of the real hub gene was greater than 0.5. Finally, functional enrichment analysis and gene set enrichment (GSEA) was performed and both of them showed the cell cycle played a vital role in PDAC.
Receptor activator of NF-κB ligand (RANKL), its signaling receptor RANK, and its decoy receptor osteoprotegerin (OPG) constitute a molecular triad that is critical in regulating bone remodeling, and also plays multiple roles in the immune system. OPG binds RANKL directly to block its interaction with RANK. In this article, we report the 2.7-Å crystal structure of human RANKL trimer in complex with the N-terminal fragment of human OPG containing four cysteine-rich TNFR homologous domains (OPG-CRD). The structure shows that RANKL trimer uses three equivalent grooves between two neighboring monomers to interact with three OPG-CRD monomers symmetrically. A loop from the CRD3 domain of OPG-CRD inserts into the shallow groove of RANKL, providing the major binding determinant that is further confirmed by affinity measurement and osteoclast differentiation assay. These results, together with a previously reported mouse RANKL/RANK complex structure, reveal that OPG exerts its decoy receptor function by directly blocking the accessibilities of important interacting residues of RANKL for RANK recognition. Structural comparison with TRAIL/death receptor 5 complex also reveals structural basis for the cross-reactivity of OPG to TRAIL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.