Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from “non-neurotoxic” snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from “non-neurotoxic” snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Quercetin derivatives have already shown their anti-inflammatory potential, inhibiting essential enzymes involved in this process. Among diverse pro-inflammatory toxins from snake venoms, phospholipase A2 is one of the most abundant in some species, such as Crotalus durissus terrificus and Bothrops jararacussu from the Viperidae family. These enzymes can induce the inflammatory process through hydrolysis at the sn-2 position of glycerophospholipids. Hence, elucidating the main residues involved in the biological effects of these macromolecules can help to identify potential compounds with inhibitory activity. In silico tools were used in this study to evaluate the potential of quercetin methylated derivatives in the inhibition of bothropstoxin I (BthTX-I) and II (BthTX-II) from Bothrops jararacussu and phospholipase A2 from Crotalus durissus terrificus. The use of a transitional analogous and two classical inhibitors of phospholipase A2 guided this work to find the role of residues involved in the phospholipid anchoring and the subsequent development of the inflammatory process. First, main cavities were studied, revealing the best regions to be inhibited by a compound. Focusing on these regions, molecular docking assays were made to show main interactions between each compound. Results reveal that analogue and inhibitors, Varespladib (Var) and p-bromophenacyl bromide (BPB), guided quercetins derivatives analysis, revealing that Leu2, Phe5, Tyr28, glycine in the calcium-binding loop, His48, Asp49 of BthTX-II and Cdtspla2 were the main residues to be inhibited. 3MQ exhibited great interaction with the active site, similar to Var results, while Q anchored better in the BthTX-II active site. However, strong interactions in the C-terminal region, highlighting His120, seem to be crucial to decreasing contacts with phospholipid and BthTX-II. Hence, quercetin derivatives anchor differently with each toxin and further in vitro and in vivo studies are essential to elucidate these data.
Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.