The chemistry of organically templated metal sulfates has attracted interest from the materials science community and the development of synthetic strategies for the preparation of organic-inorganic hybrid materials with novel structures and special properties is of current interest. Sulfur-oxygen-metal linkages provide the possibility of using sulfate tetrahedra as building units to form new solid-state materials. A series of novel organically templated metal sulfates of 2-aminopyridinium (2ap) with aluminium(III), cobalt(II), magnesium(II), nickel(II) and zinc(II) were obtained from the respective aqueous solutions and studied by single-crystal X-ray diffraction. The compounds crystallize in centrosymmetric triclinic unit cells in three structure types: type 1 for 2-aminopyridinium hexaaquaaluminium(III) bis(sulfate) tetrahydrate, (C5H7N2)[Al(H2O)6](SO4)2·4H2O, (I); type 2 for bis(2-aminopyridinium) tris[hexaaquacobalt(II)] tetrakis(sulfate) dihydrate, (C5H7N2)2[Co(H2O)6]3(SO4)4·2H2O, (II), and bis(2-aminopyridinium) tris[hexaaquamagnesium(II)] tetrakis(sulfate) dihydrate, (C5H7N2)2[Mg(H2O)6]3(SO4)4·2H2O, (III); and type 3 for bis(2-aminopyridinium) hexaaquanickel(II) bis(sulfate), (C5H7N2)2[Ni(H2O)6](SO4)2, (IV), and bis(2-aminopyridinium) hexaaquazinc(II) bis(sulfate), (C5H7N2)2[Zn(H2O)6](SO4)2, (V). The templating role of the 2ap cation in all of the reported crystalline substances is governed by the formation of characteristic charge-assisted hydrogen-bonded pairs with sulfate anions and the presence of π-π interactions between the cations. Additionally, both coordinated and uncoordinated water molecules are involved in hydrogen-bond formation. As a consequence, extensive three-dimensional hydrogen-bonding patterns are formed in the reported crystal structures.