“…To control the rate of crystallization (s 1/2 ) and the degree of crystallinity and obtain materials with better physical properties, a great deal of effort has been devoted to studying crystallization kinetics with the help of various mathematical models and determining the change in material properties. 4 The crystallization behavior 4,5 and kinetics of polymeric materials have been reviewed previously. [6][7][8] In particular, the isothermal and nonisothermal crystallization kinetics of commodity and engineering polymers, such as isotactic polypropylene, [9][10][11][12] filled polypropylenes, 13,14 poly(ethylene terephthalate), 15,16 poly(trimethylene terephthalate), 17,18 poly(butylenes terephthalate), 19 nylon, [20][21][22] and poly(sulfides), [23][24][25] have been investigated in detail, and to much lesser extent, those of biopolymers, such as poly(lactic acid) [26][27][28][29] and poly(e-caprolactone) (PCL), [30][31][32][33] have been studied, although they have found wide commercial importance.…”