Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.
Sepia eumelanin (SE), a biomacromolecule, was developed to prepare the excellent UV-shielding polymer material with better photostability. UV–vis transmittance spectra showed that poly(vinyl alcohol) PVA/SE film blocked most ultraviolet light below 300 nm even with a low concentration of SE (0.5 wt %), which still kept its high transparency in the visible spectrum. Rhodamine B photodegradation measurement further confirmed the excellent UV-shielding properties of PVA/SE film. FTIR indicated that the carbonyl absorption bands resulting from phtodegradation for PVA/SE film did not change after UV exposure for 2700 h. The tensile properties of neat PVA were deceased intensely after UV irradiation; however, those of PVA/SE film were reduced a little. Moreover, AFM indicated that the surface roughness of PVA/SE film was much lower than that of a neat PVA one. It could be concluded that SE reduced the PVA degradation rate dramatically, revealing enhanced photostability of PVA/SE film. The mechanism for outstanding UV-shielding properties and photostability of PVA/SE film was illuminated, based on the formation of charge transfer complexes (CTCs) between SE and PVA, photothermal conversion, and the well-known radical scavenging capabilities of SE.
Natural nacre is well-known by its unique properties due to the well-recognized "bricks-and-mortar" structure. Inspired by the natural nacre, graphene oxide (GO) was reduced by dopamine with simultaneous coating by polydopamine (PDA) in aqueous solution to yield polydopamine-capped reduce GO (PDG). The artificial nacre nanocomposite materials of poly(vinyl alcohol) (PVA) and PDG presenting layered structure had been successfully constructed via a vacuum-assisted assembly process, in which PDG and PVA served as "bricks" and "mortar", respectively. A combination of hydrogen bonding, strong adhesion and friction between PDG nanosheets and PVA chains resulted in enhancements for mechanical properties. The tensile strength, elongation at break, and toughness of PDG-PVA nanocomposite reached to 327 ± 19.3 MPa, 8 ± 0.2%, and 13.0 ± 0.7 MJ m, which is simultaneously 2.4, 8, and 7 times higher than that of nature nacre with 80-135 MPa, ∼1%, and ∼1.8 MJ m, respectively. More interestingly, the obtained nanocomposites demonstrated a high anisotropy of thermal conductivity (k/k ≈ 380). Combined with superior mechanical properties and high anisotropy of thermal conductivity make these biomimetic materials promising candidates in aerospace, tissue engineering, and thermal management applications.
Porous tubular palladium nanostructures were synthesized by electrodeposition of palladium into a CdS modified alumina template and subsequent removal of CdS; the nanostructures provided a promising platform for the fabrication of nonenzymatic glucose sensors.
Melanin, a kind of well-known multifunctional biomacromolecules that are widely distributed in natural sources. In this work, polyurethane (PU)/melanin nanocomposites with enhanced tensile strength and toughness were successfully fabricated via in situ polymerization. It was found that the tensile strength (σ), elongation-at-break (ε), and toughness (W) were improved from 5.6 MPa, 770%, and 33 MJ/m for PU to 51.5 MPa, 1880%, and 413 MJ/m for PU/melanin (2 wt %) nanocomposite, respectively. Micromorphology indicated that individualized melanin nanoparticles were specifically linked to the hard domains of PU chains and fine dispersed in matrix. FTIR, DSC, and AFM results suggested melanin induced an improvement in degree of phase separation, which resulted in remarkable enhancements in mechanical properties of PU. However, with further increasing content of melanin, a relatively large-scale phase separation was formed and led to a decrease in mechanical properties of PU. In addition, interactions between melanin and hard segments of PU were increased, leading to a higher T. Moreover, the dynamic mechanical properties and rheological behavior of PU/melanin nanocomposites were further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.