We report the compositional and temperature dependence of magnetic compensation in amorphous ferrimagnetic Gd x Fe 93−x Co 7 alloy films. Magnetic compensation is attributed to the competition between antiferromagnetic coupling of rare-earth (RE) with transition-metal (TM) ions and ferromagnetic interaction between the TM ions. The low-Gd region of x between 20 and 34 was found to exhibit compensation phenomena characterized by a low saturation magnetization and perpendicular magnetic anisotropy (PMA) near the compensation temperature.Compensation temperature was not observed in previously unreported high-Gd region of x=52-59, in qualitative agreement with results from recent model calculations. However, low magnetization was achieved at room temperature, accompanied by a large PMA with coercivity reaching ~6.6 kOe. The observed perpendicular magnetic anisotropy of amorphous GdFeCo films probably has a structural origin consistent with certain aspects of the atomic-scale anisotropy. Our findings have broadened the composition range of transition metal-rare earth alloys for designing PMA films, making it attractive for tunable magnetic anisotropy in nanoscale devices.