Abstract-The localization problem for an autonomous robot moving in a known environment is a well-studied problem which has seen many elegant solutions. Robot localization in a dynamic environment populated by several moving obstacles, however, is still a challenge for research. In this paper, we use an omnidirectional camera mounted on a mobile robot to perform a sort of scan matching. The omnidirectional vision system finds the distances of the closest color transitions in the environment, mimicking the way laser rangefinders detect the closest obstacles. The similarity of our sensor with classical rangefinders allows the use of practically unmodified Monte Carlo algorithms, with the additional advantage of being able to easily detect occlusions caused by moving obstacles. The proposed system was initially implemented in the RoboCup Middle-Size domain, but the experiments we present in this paper prove it to be valid in a general indoor environment with natural color transitions. We present localization experiments both in the RoboCup environment and in an unmodified office environment. In addition, we assessed the robustness of the system to sensor occlusions caused by other moving robots. The localization system runs in real-time on low-cost hardware.