We present a novel approach to estimating depth from single omnidirectional camera images by learning the relationship between visual features and range measurements available during a training phase. Our model not only yields the most likely distance to obstacles in all directions, but also the predictive uncertainties for these estimates. This information can be utilized by a mobile robot to build an occupancy grid map of the environment or to avoid obstacles during explorationtasks that typically require dedicated proximity sensors such as laser range finders or sonars. We show in this paper how an omnidirectional camera can be used as an alternative to such range sensors. As the learning engine, we apply Gaussian processes, a nonparametric approach to function regression, as well as a recently developed extension for dealing with input-dependent noise. In practical experiments carried out in different indoor environments with a mobile robot equipped with an omnidirectional camera system, we demonstrate that our system is able to estimate range with an accuracy comparable to that of dedicated sensors based on sonar or infrared light.
Key words: omnidirectional vision, learning, range sensing, Gaussian processes
Preprint submitted to RAS -Special Issue on Omnidirectional Robot Vision December 18, 2009Figure 1: Our system records intensity images (left) and estimates the distances to nearby obstacles (right) after having learned how visual appearance is related to depth.