Objective: Despite the identification of active extravasation on computed tomography angiography (CTA) in patients with overt gastrointestinal bleeding (GIB), a large proportion do not have active bleeding or require hemostatic therapy at endoscopy, catheter angiography, or surgery. The objective of our proof-of-concept study was to improve triage of patients with GIB by correlating extravasation volume of first-pass CTA with bleeding rate and clinical outcomes. Materials and Methods: All patients who presented with overt GIB and active extravasation on CTA from January 2014 to July 2019 were reviewed in this retrospective, institutional review board-approved and Health Insurance Portability and Accountability Act-compliant study. Extravasation volume was assessed using 3-dimensional software and correlated with hemostatic therapy (primary endpoint) and with intraprocedural bleeding, blood transfusions, and mortality as secondary endpoints using logistic regression models (P < 0.0125 indicating statistical significance). Odds ratios were used to determine the effect size of a threshold extravasation volume. Quantitative data (extravasation volume, aorta attenuation, extravasation attenuation and time) were input into a mathematical model to calculate bleeding rate. Results: Fifty consecutive patients including 6 (12%) upper, 18 (36%) small bowel, and 26 (52%) lower GIB met inclusion criteria. Forty-two underwent catheter angiography, endoscopy, or surgery; 16 had intraprocedural active bleeding, and 24 required hemostatic therapy. Higher extravasation volumes correlated with hemostatic therapy (P = 0.007), intraprocedural active bleeding (P = 0.003), and massive transfusion (P = 0.0001), but not mortality (P = 0.936). Using a threshold volume of 0.80 mL or greater, the odds ratio of hemostatic therapy was 8.1 (95% confidence interval, 2.1-26), active bleeding was 11.8 (2.6-45), and massive transfusion was 18 (2.3-65). With mathematical modeling, extravasation volume had a direct and linear relationship with bleeding rate, and the lowest calculated detectable bleeding rate with CTA was less than 0.1 mL/min. Conclusions: Larger extravasation volumes correlate with higher bleeding rates and may identify patients who require hemostatic therapy, have intraprocedural bleeding, and require blood transfusions. Current CTAs can detect bleeding rates less than 0.1 mL/min.