With the wide use of nanomaterials in our daily life, the potential ecotoxicology effect of nanoparticles (NPs) has attracted more and more attention from researchers. Here, the ZnS:Mn (0.5%, 2.0%, 4.0% and 10% of Mn, in mol) QDs were synthesized using the polyol method, and the toxicity mechanism was investigated by contacting the microalgae Chlorella vulgaris with ZnS:Mn QDs in different culture media (BG11, Seine River water - SRW, synthetic seawater - SSW). The crystalline size of the synthesized QDs was around 1.5 nm, but the particles tended to aggregate since the size of the ZnS:Mn colloids determined by DLS ranged from 300 nm to 700 nm at pH 6 and 8. From a toxicological point of view, all these ZnS:Mn QDs caused a decrease in the photosynthetic activity, cell viability, and intracellular ATP level; moreover, the SOD activity significantly increased in SSW, which evidenced that the ZnS:Mn NPs would expose the algae cell in the oxidative stress environment. Finally, TEM observations of the algae thin sections confirmed the internalization of the ZnS:Mn NPs, which caused the leakage of the cytoplasm.