Thin-film solar cell devices based on copper indium gallium diselenide (CIGSe) chalcogenide materials fabricated by vacuum-based deposition techniques have already achieved lab scale efficiency beyond 21%. For industrial-scale applications, non-vacuum deposition technique such as electrodeposition and screen printing is considered to be suitable approaches for reducing the device fabrication cost. Moreover, electrodeposition has the potential to prepare large area thin films as it requires cheap raw material sources and equipment capital. Hence, it is imperative to understand the current status and advancements in the electroplating techniques of the CIGSe thin films. This article reviews on the experimental advances in electroplating of ternary CuInSe 2 and quaternary CIGSe. Various approaches in electrodeposition, influential experimental parameters, and the deposition mechanisms which are related to the final cell efficiency are discussed in detail.