Phone: þ46 (0) 18 471 3382, Fax: þ46 (0) 18 555 095Cu 2 ZnSn(S,Se) 4 (CZTS(e)) solar cells suffer from low-opencircuit voltages that have been blamed on the existence of band gap fluctuations, with different possible origins. In this paper, we show from both theoretical and experimental standpoints that disorder of Cu and Zn atoms is in all probability the primary cause of these fluctuations. First, quantification of Cu-Zn disorder in CZTS thin films is presented. The results indicate that disorder is prevalent in the majority of practical samples used for solar cells. Then, ab initio calculations for different arrangements and densities of disorder-induced [Cu Zn þ Zn Cu ] defect pairs are presented and it is shown that spatial variations in band gap of the order of 200 meV can easily be caused by Cu-Zn disorder, which would cause large voltage losses in solar cells. Experiments using Raman spectroscopy and room temperature photoluminescence combined with in situ heat-treatments show that a shift in the energy of the dominant band-to-band recombination pathway correlates perfectly to the order-disorder transition, which clearly implicates Cu-Zn disorder as the cause of band gap fluctuations in CZTS. Our results suggest that elimination or passivation of Cu-Zn disorder could be very important for future improvements in the efficiency of CZTS(e)-based solar cells.
This contribution evaluates the effect of absorber off‐stoichiometry in wide‐gap (Ag,Cu)(In,Ga)Se2 (ACIGS) solar cells. It is found that ACIGS films show an increased tendency to form ordered vacancy compounds (OVCs) with increasing Ga and Ag contents. Very little tolerance to off‐stoichiometry is detected for absorber compositions giving the desired properties of 1) an optimum bandgap (EG) for a top cell in tandem devices (EG = 1.6–1.7 eV) and at the same time 2) a favorable band alignment with a CdS buffer layer. Herein, massive formation of either In‐ or Ga‐enriched OVC patches is found for group I‐poor ACIGS. As a consequence, carrier transport and charge collection are significantly impeded in corresponding solar cells. The transport barrier appears to be increasing with storage time, questioning the long‐term stability of wide‐gap ACIGS solar cells. Furthermore, the efficiency of samples with very high Ga and Ag contents depends on the voltage sweep direction. It is proposed that the hysteresis behavior is caused by a redistribution of mobile Na ions in the 1:1:2 absorber lattice upon voltage bias. Finally, a broader perspective on OVC formation in the ACIGS system is provided and fundamental limitations for wide‐gap ACIGS solar cells are discussed.
The degradation of CuInSe2 absorbers in ambient air is observed by the decay of the quasi-Fermi level splitting under well defined illumination with time. The decay is faster and stronger in absorbers with [Cu]/[In]<1 than in ones with a higher ratio. It can be attributed to the oxidation of the sample. Epitaxial films containing no Na show very similar trends, indicating that decay and oxidation are independent of the Na content. A standard CdS layer commonly used as buffer in solar cells, terminates the decay even over many months. Aged absorbers can be completely restored by a KCN etch.
We study defects in CuInSe 2 (CIS) grown under Cu-excess. Samples with different Cu/In and Se/metals flux ratios were characterized by thermal admittance spectroscopy (TAS), capacitance-voltage measurements (CV) and temperature dependent current voltage measurements (IVT). All samples showed two different capacitance responses, which we attribute to defects with energies around 100 and 220 meV. Plus the beginning of an additional step that we attribute to a freeze-out effect. By application of the Meyer-Neldel rule, the parameters of the two defects can be assigned to two different groups, both lying within the energy region of the so-called 'N1-defect' that has been observed for Cu-poor absorbers.
Zn 1-x Sn x O y (ZTO) has yielded promising results as buffer material for the full sulfur Cu 2 ZnSnS 4 (CZTS), with efficiencies continuously surpassing its CdS-references. ZTO can be deposited by atomic layer deposition (ALD) enabling tuning of the conduction band position through choice of metal ratio or deposition temperature. Thus an optimization of the conduction band alignment between ZTO and CZTS can be achieved. The ZTO bandgap is generally larger than that of CdS and can therefore yield higher currents due to reduced losses in the short wavelength region. Another advantage is the possibility to omit the toxic Cd. In this study the ALD process temperature was varied from 105 to 165 °C. Current-blocked devices were obtained at 105 °C while the highest open-circuit voltage and device efficiency was achieved for 145 °C. The highest fill factor was seen at 165 °C. The best efficiency reached in this study was 9.0 %, which, to our knowledge, is the highest efficiency reported for Cd-free full-sulfur CZTS. We also show that the effect of heat needs to be taken into 2 account. The results indicate that part of the device improvement comes from heating the absorber, but that the benefit of using a ZTO-buffer is clear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.