Based on quintic trigonometric Bézier like basis functions, the biquintic Bézier surfaces are modeled with four shape parameters that not only possess the key properties of the traditional Bézier surface but also have exceptional shape adjustment. In order to construct Bézier like curves with shape parameters, we present a class of quintic trigonometric Bézier like basis functions, which is an extension of a traditional Bernstein basis. Then, according to these basis functions, we construct three different types of shape adjustable surfaces such as general surface, swept surface and swung surface. In addition to the application of the proposed method, we also discuss the shape adjustment of surfaces showing with curvature nephogram (with and without fixing the boundaries). However, the modeling examples shows that the suggested approach is efficient and easy to implement.