First introduced in 1954, the linear-probing hash table is among the oldest data structures in computer science, and thanks to its unrivaled data locality, linear probing continues to be one of the fastest hash tables in practice. It is widely believed and taught, however, that linear probing should never be used at high load factors; this is because of an effect known as primary clustering which causes insertions at a load factor of 1 − 1/x to take expected time Θ(x 2 ) (rather than the intuitive running time of Θ(x)). The dangers of primary clustering, first discovered by Knuth in 1963, have now been taught to generations of computer scientists, and have influenced the design of some of the most widely used hash tables in production.We show that primary clustering is not the foregone conclusion that it is reputed to be. We demonstrate that seemingly small design decisions in how deletions are implemented have dramatic effects on the asymptotic performance of insertions: if these design decisions are made correctly, then even if a hash table operates continuously at a load factor of 1 − Θ(1/x), the expected amortized cost per insertion/deletion is Õ(x). This is because the tombstones left behind by deletions can actually cause an anti-clustering effect that combats primary clustering. Interestingly, these design decisions, despite their remarkable effects, have historically been viewed as simply implementation-level engineering choices.We also present a new variant of linear probing (which we call graveyard hashing) that completely eliminates primary clustering on any sequence of operations: if, when an operation is performed, the current load factor is 1 − 1/x for some x, then the expected cost of the operation is O(x). Thus we can achieve the data locality of traditional linear probing without any of the disadvantages of primary clustering. One corollary is that, in the external-memory model with a data blocks of size B, graveyard hashing offers the following remarkably strong guarantee: at any load factor 1 − 1/x satisfying x = o(B), graveyard hashing achieves 1 + o(1) expected block transfers per operation. In contrast, past external-memory hash tables have only been able to offer a 1 + o(1) guarantee when the block size B is at least Ω(x 2 ).Our results come with actionable lessons for both theoreticians and practitioners, in particular, that welldesigned use of tombstones can completely change the asymptotic landscape of how the linear probing behaves (and even in workloads without deletions).