2013
DOI: 10.1186/1471-2105-14-117
|View full text |Cite
|
Sign up to set email alerts
|

CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions

Abstract: BackgroundThe maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases.ResultsWe present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
169
0
6

Year Published

2014
2014
2018
2018

Publication Types

Select...
8
2

Relationship

1
9

Authors

Journals

citations
Cited by 203 publications
(177 citation statements)
references
References 30 publications
2
169
0
6
Order By: Relevance
“…CUDA (Compute Unified Device Architecture) es una plataforma de computación paralela y un modelo de programación inventado por NVIDIA ("CUDA Zone | NVIDIA Developer," 2011; Nvidia, 2011;NVIDIA, 2015) permite aumentos impresionantes en el rendimiento del computador al aprovechar las unidades de procesamiento gráfico (GPU) alojadas en la tarjeta gráfica. Actualmente se reportan varias aplicaciones de esta tecnología en el área de la Bioinformática: en el análisis de genes en microarreglos y alineación de secuencias (Yongchao Liu, Schmidt, & Maskell, 2012), simulación de sistemas biológicos y búsqueda de secuencias en bases de datos (Y Liu, Wirawan, & Schmidt, 2013), entre otras aplicaciones disponibles en el sitio para desarrolladores de NVIDIA ("CUDA Zone | NVIDIA Developer," 2011), (Hwu, 2012), (Schatz, Trapnell, Delcher, & Varshney, 2007), (Manavski & Valle, 2008).…”
Section: Introductionunclassified
“…CUDA (Compute Unified Device Architecture) es una plataforma de computación paralela y un modelo de programación inventado por NVIDIA ("CUDA Zone | NVIDIA Developer," 2011; Nvidia, 2011;NVIDIA, 2015) permite aumentos impresionantes en el rendimiento del computador al aprovechar las unidades de procesamiento gráfico (GPU) alojadas en la tarjeta gráfica. Actualmente se reportan varias aplicaciones de esta tecnología en el área de la Bioinformática: en el análisis de genes en microarreglos y alineación de secuencias (Yongchao Liu, Schmidt, & Maskell, 2012), simulación de sistemas biológicos y búsqueda de secuencias en bases de datos (Y Liu, Wirawan, & Schmidt, 2013), entre otras aplicaciones disponibles en el sitio para desarrolladores de NVIDIA ("CUDA Zone | NVIDIA Developer," 2011), (Hwu, 2012), (Schatz, Trapnell, Delcher, & Varshney, 2007), (Manavski & Valle, 2008).…”
Section: Introductionunclassified
“…ted implementations of this algorithm exist (e.g., [8], [11]). However, all these implementations perform one complete sequence matching per compute thread, making such an implementation unsuitable for direct application onto BWA-MEM, as it requires batching and sorting of larger groups of work.…”
Section: Related Workmentioning
confidence: 99%
“…Finally, virtual machines were configured to have 4 cores and 12 GB of RAM memory. The applications used in this analysis are LAMMPS [2], CUDA-MEME [16], CUDASW++ [9], and GPU-BLAST [27], being all of them listed in the NVIDIA GPU-Accelerated Applications Catalog [13]. Figure 7 shows the performance of these four applications when executed in the following scenarios:…”
Section: Benefit 4: Virtual Machines Can Easily Access Gpusmentioning
confidence: 99%