Importance of the field: The increasing prevalence of type 2 diabetes mellitus and the negative clinical outcomes observed with the commercially available anti-diabetic drugs have led to the investigation of new therapeutic approaches focused on controlling postprandrial glucose levels. The use of carbohydrate digestive enzyme inhibitors from natural resources could be a possible strategy to block dietary carbohydrate absorption with less adverse effects than synthetic drugs.
Areas covered in this review: This review covers the latest evidence regarding in vitro and in vivostudies in relation to pancreatic alpha-amylase inhibitors of plant origin, and presents bioactive compounds of phenolic nature that exhibit anti-amylase activity.What the reader will gain: The state of the art of the search for new pancreatic alpha amylase inhibitors of plant origin for the treatment of type 2 diabetes mellitus.Take home message: Pancreatic alpha-amylase inhibitors from traditional plant extracts are a promising tool for diabetes treatment. Many studies have confirmed the alpha-amylase inhibitory activity of plants and their bioactive compounds in vitro, but few studies corroborate these findings in rodents and very few in humans. Thus, despite some encouraging results, more research is required for developing a valuable anti-diabetic therapy using pancreatic alpha-amylase inhibitors of plant origin.Keywords: alpha-amylase; flavonoids; proanthocyanidins; tannins; type 2 diabetes mellitus 2
IntroductionDiabetes mellitus is one of the world´s major diseases, with an estimation of 347 million adults affected in 2011 (1). Type 2 diabetes mellitus, by far the most common type, is a metabolic disorder of multiple etiology characterized by carbohydrate, lipid and protein metabolic disorders that includes defects in insulin secretion, almost always with a major contribution of insulin resistance (2). These abnormalities could lead to lesions such as retinopathy, nephropathy, neuropathy, and angiopathy (3).In this context, the inhibition of carbohydrate digestive enzymes is considered a therapeutic tool for the treatment of type 2 diabetes (4). The most important digestive enzyme is pancreatic alpha-amylase (EC 3.2.1.1), a calcium metalloenzyme that catalyzes the hydrolysis of the alpha-1,4 glycosidic linkages of the starch, amylose, amylopectin, glycogen, and various maltodextrins and is responsible of most of starch digestion in humans. A second enzyme named alpha-glucosidase or maltase (EC 3.2.1.20) catalyzes the final step of the digestive process of carbohydrates acting upon 1,4-alpha bonds and giving as a result glucose (4).A positive correlation between human pancreatic alpha-amylase (HPA) activity and the increase in postprandial glucose levels has been shown, demonstrating the relevance of suppressing postprandial hyperglycemia (PPHG) in the treatment of type 2 diabetes (5). The ability of the alpha-amylase enzyme inhibitors to avoid dietary starch to be digested and absorbed in the organism has allowed to designat...