Extensive research within last half a century has indicated that curcumin (diferuloylmethane), a yellow pigment in curry powder, exhibits antioxidant, anti-inflammatory and proapoptotic activities. Whether anti-inflammatory and proapoptotic activities assigned to curcumin, are mediated through its antioxidant mechanism was investigated. We found that TNF-mediated NF-κB activation was inhibited by curcumin; and glutathione reversed the inhibition. Similarly, suppression of TNFinduced AKT activation by curcumin, was also abrogated by glutathione. The reducing agent also counteracted the inhibitory effect of curcumin on TNF-induced NF-κB regulated antiapoptotic (Bcl-2, Bcl-xL, IAP1), proliferative (cyclin D1) and proinflammatory (COX-2, iNOS and MMP-9) gene products. The suppression of TNF-induced AP-1 activation by curcumin was also reversed by glutathione. Also, the direct proapoptotic effects of curcumin were inhibited by glutathione and potentiated by depletion of intracellular glutathione by buthionine sulfoximine. Moreover, curcumin induced the production of reactive oxygen species (ROS) and modulated the intracellular GSH levels. Quenchers of hydroxyl radicals, however, were ineffective in inhibiting curcumin mediated NF-κB suppression. Further, N-acetylcysteine partially reversed the effect of curcumin. Based on these results we conclude that curcumin mediate its apoptotic and anti-inflammatory activities through modulation of the redox status of the cell.