Background: Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, subcellular fraction of isolated synaptic terminal that contain mitochondria, as mitochondrial delivery systems. Results: Synaptosomes preparation was validated by the presence of Synaptophysin and PSD95. Syn aptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/mL. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein-protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions: Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, replacement of affected mitochondria with healthy ones could be a potential therapy for the treatment of neuronal mitochondrial dysfunction-related diseases.