In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others.Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 µm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).Keywords: infrared detectors / components design / curved retina / optical design / large field of view telescope / novel design / advanced detector / Si CMOS detectors / infrared focal plane arrays