2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS) 2018
DOI: 10.1109/ctems.2018.8769171
|View full text |Cite
|
Sign up to set email alerts
|

Customer Segmentation using K-means Clustering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
23
0
5

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 102 publications
(40 citation statements)
references
References 1 publication
1
23
0
5
Order By: Relevance
“…From the Dendrogram, which is obtained as an output of hierarchical clustering, around 3 clusters are formed. Kmeans clustering is performed for 2 to 5 clusters iteratively [18]. The optimum number of clusters (n) which have a uniform distribution of customers are found when n = 3.…”
Section: F Cluster Analysismentioning
confidence: 99%
“…From the Dendrogram, which is obtained as an output of hierarchical clustering, around 3 clusters are formed. Kmeans clustering is performed for 2 to 5 clusters iteratively [18]. The optimum number of clusters (n) which have a uniform distribution of customers are found when n = 3.…”
Section: F Cluster Analysismentioning
confidence: 99%
“…Clustering finds broad applications in areas ranging from customer segmentation (Kansal et al, 2018) to agriculture (Mehta et al, 2015), but it also plays an important role in wireless communication networks. For instance, in wireless sensor networks (WSNs), clustering plays a vital role in detecting anomalies in a network (Zhang et al, 2010).…”
Section: Unsupervised Learningmentioning
confidence: 99%
“…Nilai K (Cluster) akan ditentukan sebelum dibentuk Cluster nya. Penggunaan Metode Elbow pada beberapa penelitian diyakini baik untuk penentuan nilai K pada metode K-Means [5] [6]. Metode Elbow memiliki kinerja dengan cara menguji coba satu per satu nilai K yang akan disimpan pada Sum Square Error (SSE), setelah ditemukan nilai K Cluster yang optimal maka K Centeroid akan menghasilkan titik pusat secara acak, dan tiap data akan dikalkulasi sampai membentuk suatu Cluster sesuai nilai K Cluster yang dibuat.…”
Section: Pendahuluanunclassified
“…Metode Elbow memiliki kinerja dengan cara menguji coba satu per satu nilai K yang akan disimpan pada Sum Square Error (SSE), setelah ditemukan nilai K Cluster yang optimal maka K Centeroid akan menghasilkan titik pusat secara acak, dan tiap data akan dikalkulasi sampai membentuk suatu Cluster sesuai nilai K Cluster yang dibuat. Pada penulisan ini nilai yang akan di Clustering berasal dari hasil mapping pada model RFM [6]. Pada penelitian [1] [2] [4] [6] telah menjelaskan keuntungan dari penerapan Metode K-Means, Metode K-Medoids dengan model RFM memiliki kinerja yang sesuai dalam pembuatan segmentasi pelanggan berdasarkan dari data pelanggan.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation