This paper uses neural network as a predictive model and genetic algorithm as an online optimization algorithm to simulate the noise processing of Chinese-English parallel corpus. At the same time, according to the powerful random global search mechanism of genetic algorithm, this paper studied the principle and process of noise processing in Chinese-English parallel corpus. Aiming at the task of identifying isolated words for unspecified persons, taking into account the inadequacies of the algorithms in standard genetic algorithms and neural networks, this paper proposes a fast algorithm for training the network using genetic algorithms. Through simulation calculations, different characteristic parameters, the number of training samples, background noise, and whether a specific person affects the recognition result were analyzed and discussed and compared with the traditional dynamic time comparison method. This paper introduces the idea of reinforcement learning, uses different reward mechanisms to solve the inconsistency of loss function and evaluation index measurement methods, and uses different decoding methods to alleviate the problem of exposure bias. It uses various simple genetic operations and the survival of the fittest selection mechanism to guide the learning process and determine the direction of the search, and it can search multiple regions in the solution space at the same time. In addition, it also has the advantage of not being restricted by the restrictive conditions of the search space (such as differentiable, continuous, and unimodal). At the same time, a method of using English subword vectors to initialize the parameters of the translation model is given. The research results show that the neural network recognition method based on genetic algorithm which is given in this paper shows its ability of quickly learning network weights and it is superior to the standard in all aspects. The performance of the algorithm in genetic algorithm and neural network, with high recognition rate and unique application advantages, can achieve a win-win of time and efficiency.