Defining the project estimated cost, duration and maintenance effort early in the development life cycle is a valuable goal to be achieved for software projects. Many model structures evolved in the literature. These model structures consider modeling software effort as a function of the developed line of code (DLOC). Building such a function helps project managers to accurately allocate the available resources for the project. In this study, we present two new model structures to estimate the effort required for the development of software projects using Genetic Algorithms (GAs). A modified version of the famous COCOMO model provided to explore the effect of the software development adopted methodology in effort computation. The performance of the developed models were tested on NASA software project dataset [1] .The developed models were able to provide a good estimation capabilities.
Obstructive sleep apnea (OSA) is a well-known sleep ailment. OSA mostly occurs due to the shortage of oxygen for the human body, which causes several symptoms (i.e., low concentration, daytime sleepiness, and irritability). Discovering the existence of OSA at an early stage can save lives and reduce the cost of treatment. The computer-aided diagnosis (CAD) system can quickly detect OSA by examining the electrocardiogram (ECG) signals. Over-serving ECG using a visual procedure is challenging for physicians, time-consuming, expensive, and subjective. In general, automated detection of the ECG signal’s arrhythmia is a complex task due to the complexity of the data quantity and clinical content. Moreover, ECG signals are usually affected by noise (i.e., patient movement and disturbances generated by electric devices or infrastructure), which reduces the quality of the collected data. Machine learning (ML) and Deep Learning (DL) gain a higher interest in health care systems due to its ability of achieving an excellent performance compared to traditional classifiers. We propose a CAD system to diagnose apnea events based on ECG in an automated way in this work. The proposed system follows the following steps: (1) remove noise from the ECG signal using a Notch filter. (2) extract nine features from the ECG signal (3) use thirteen ML and four types of DL models for the diagnosis of sleep apnea. The experimental results show that our proposed approach offers a good performance of DL classifiers to detect OSA. The proposed model achieves an accuracy of 86.25% in the validation stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.