Software fault prediction (SFP) is a complex problem that meets developers in the software development life cycle. Collecting data from real software projects, either while the development life cycle or after lunch the product, is not a simple task, and the collected data may suffer from imbalance data distribution problem. In this research, we proposed an Enhanced Binary Moth Flame Optimization (EBMFO) with Adaptive synthetic sampling (ADASYN) to predict software faults. BMFO is employed as a wrapper feature selection, while ADASYN enhances the input dataset and address the imbalanced dataset. Converting MFO algorithm from a continues version to the binary version using transfer functions (TFs) from two different groups (S-shape and V-shape) is investigated in this work and proposed an EBFMFO version. Fifteen real projects data obtained from PROMISE repository are employed in this work. Three different classifiers are used: the k-nearest neighbors (k-NN), Decision Trees (DT), and Linear discriminant analysis (LDA). The reported results demonstrate that the proposed EBMFO enhances the overall performance of classifiers and outperforms the results in the literature and show the importance of TF for feature selection algorithms.
Fake or false information on social media platforms is a significant challenge that leads to deliberately misleading users due to the inclusion of rumors, propaganda, or deceptive information about a person, organization, or service. Twitter is one of the most widely used social media platforms, especially in the Arab region, where the number of users is steadily increasing, accompanied by an increase in the rate of fake news. This drew the attention of researchers to provide a safe online environment free of misleading information. This paper aims to propose a smart classification model for the early detection of fake news in Arabic tweets utilizing Natural Language Processing (NLP) techniques, Machine Learning (ML) models, and Harris Hawks Optimizer (HHO) as a wrapper-based feature selection approach. Arabic Twitter corpus composed of 1862 previously annotated tweets was utilized by this research to assess the efficiency of the proposed model. The Bag of Words (BoW) model is utilized using different term-weighting schemes for feature extraction. Eight well-known learning algorithms are investigated with varying combinations of features, including user-profile, content-based, and words-features. Reported results showed that the Logistic Regression (LR) with Term Frequency-Inverse Document Frequency (TF-IDF) model scores the best rank. Moreover, feature selection based on the binary HHO algorithm plays a vital role in reducing dimensionality, thereby enhancing the learning model’s performance for fake news detection. Interestingly, the proposed BHHO-LR model can yield a better enhancement of 5% compared with previous works on the same dataset.
Obstructive sleep apnea (OSA) is a well-known sleep ailment. OSA mostly occurs due to the shortage of oxygen for the human body, which causes several symptoms (i.e., low concentration, daytime sleepiness, and irritability). Discovering the existence of OSA at an early stage can save lives and reduce the cost of treatment. The computer-aided diagnosis (CAD) system can quickly detect OSA by examining the electrocardiogram (ECG) signals. Over-serving ECG using a visual procedure is challenging for physicians, time-consuming, expensive, and subjective. In general, automated detection of the ECG signal’s arrhythmia is a complex task due to the complexity of the data quantity and clinical content. Moreover, ECG signals are usually affected by noise (i.e., patient movement and disturbances generated by electric devices or infrastructure), which reduces the quality of the collected data. Machine learning (ML) and Deep Learning (DL) gain a higher interest in health care systems due to its ability of achieving an excellent performance compared to traditional classifiers. We propose a CAD system to diagnose apnea events based on ECG in an automated way in this work. The proposed system follows the following steps: (1) remove noise from the ECG signal using a Notch filter. (2) extract nine features from the ECG signal (3) use thirteen ML and four types of DL models for the diagnosis of sleep apnea. The experimental results show that our proposed approach offers a good performance of DL classifiers to detect OSA. The proposed model achieves an accuracy of 86.25% in the validation stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.