Denny and co-workers (Navazesh et al., 1992) recently reported decreased concentrations of MG1 and MG2 mucins in resting and stimulated whole human saliva with age. The current study was therefore conducted to examine whether there is a corresponding attenuation with age in stimulus secretion coupling regulating mucous cell exocrine secretion. We utilized an in vitro model system, isolated rat sublingual acini, to evaluate the regulation of mucous cell exocrine secretion. Rat sublingual glands are similar to human sublingual and minor mucous glands, both histologically and in terms of their pattern of innervation, which is predominantly parasympathetic. Mucin secretion is thus activated primarily by muscarinic cholinergic agonist and to a lesser extent by vasoactive intestinal peptide (VIP), which is co-localized with acetylcholine in parasympathetic nerve terminals. We isolated sublingual mucous acini from five-month-old and 24-month-old rats and compared the concentration responses for mucin secretion induced by VIP and the muscarinic agonist, arecaidine propargyl ester (APE). Concentration-response curves for VIP were nearly identical for mucous acini from the five-month-old and 24-month-old animals. Values for basal secretion, maximal secretion, and EC50 (approximately equal to 200 nmol/L VIP) were statistically equivalent between both age groups. Concentration-response curves for APE were also very similar between age groups, with no statistically significant difference in basal secretion or EC50 values (approximately equal to 50 nmol/L APE). Maximal secretion was slightly less but statistically different for 24-month-old vs. five-month-old animals, 158% vs. 169% above basal secretion, respectively. Collectively, we found no substantial age-related changes in the secretory responsiveness of salivary mucous cells.