We have found cyclic AMP in the large, heterotrichous ciliate Stentor coeruleus in amounts per milligram protein similar to those found in another ciliate, Tetrahymena pyriformis. The possible function of cyclic AMP in Stentor was first examined by determining its effects on oral regeneration, the process by which Stentor can replace a missing oral apparatus in eight to ten hours. Once begun (by brief exposure to a 15% sucrose solution, causing shedding of the oral apparatus) regeneration follows eight specific morphological stages visible with the dissecting microscope. Continuous exposure of regenerating cells to either N6, Z'-O-dibutyryl adenosine cyclic 3':5'-monophosphate (DBC) or theophylline begun a t the onset of oral regeneration (stage 0) caused delays in the completion of regeneration. The delays induced by DBC occurred in the early stages prior to stage 5. Regenerating cells exposed to DBC or theophylline at various stages of development were delayed, even at stages 5 and 6. Both DBC and theophylline reversibly bleached the cortical pigment of the cells. Guanosine 3':5'-cyclic monophosphate (cyclic GMP), AMP, GMP, and sodium butyrate neither delayed oral regeneration nor bleached the cortical pigment. Excess extracellular calcium ions alone had no effect on oral regeneration, but 10 mM calcium and DBC caused more delay than DBC alone. Thus, the delay of oral regeneration in Stentor caused by cyclic AMP may involve calcium ions.To determine if cyclic AMP can retard in situ ciliary regeneration by Stentor, as it does in Tetrahymena, a new technique, more accurate than past methods, was developed to monitor ciliary regrowth. Using this procedure we found that both DBC and theophylline significantly delayed the in situ ciliary regeneration by Stentor.