In order to understand the dynamic responses of gamete nuclei upon fertilization in the fish, Oryzias latipes, the relationship between changes in the activity of histone H1 kinase and nuclear behavior was examined during fertilization. Kinase activity rapidly decreased concomitant with the initiation of the propagative exocytosis of cortical alveoli following sperm attachment to the egg plasma membrane post-insemination (PI). Activity again increased 30 min PI. Similar changes in kinase activity, migration and syngamy of pronuclei, and subsequent cleavage were observed with aphidicolin or actinomycin D treatment, except that formation of abnormal metaphase chromosomes was retarded in aphidicolin-treated zygotes. Pretreatment of unfertilized eggs with cycloheximide or 6-dimethylaminopurine (6-DMAP) caused no nuclear changes. The activity of histone H1 kinase in these eggs rapidly declined following sperm penetration and exocytosis, but did not undergo subsequent increase in the presence of these inhibitors. In these eggs with low histone H1 kinase activity, the fertilization process from sperm penetration to syngamy occurred normally, but the pronuclear membrane did not break down and the chromosomes did not condense. The present data suggest that in fish eggs, DNA replication as well as the synthesis and phosphorylation of proteins, especially cyclin B, are required for normal formation of metaphase chromosomes at the first cleavage, but not for fertilization events from sperm penetration through to nuclear migration resulting in syngamy.