Despite their self-reconstruction properties in heterogeneous media, Bessel beams are known to degenerate when they are refracted from an isotropic to an anisotropic medium. In this paper, we study the converse situation wherein an anisotropic Bessel beam is refracted into an isotropic medium. It is shown that these anisotropic Bessel beams also degenerate, leading to confined vortical waves that may serve as localized particle trap for acoustical tweezers. The linear nature of this degeneration allows the 3D control of this trap position by wavefront correction. Theory is confronted to experiments performed in the field of acoustics. A swirling surface acoustic wave is synthesized at the surface of a piezoelectric crystal by a MEMS integrated system and radiated inside a miniature liquid vessel. The wavefront correction is operated with inverse filter technique. This work opens perspectives for contactless on-chip manipulation devices.