Synaptophysin (protein p38), a major integral membrane glycoprotein of small presynaptic vesicles, was localized immunohistochemically in semithin sections of the superficial pineal gland of the Mongolian gerbil (Meriones unguiculatus). Synaptophysin immunoreactivity could be detected in all pinealocytes, which were visualized with antibodies directed against neuron-specific enolase (NSE) in adjacent sections. No p38 immunoreactivity was discernible in the interstitial glial cells, which showed a heterogeneous pattern of immunostaining for the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Pinealocytes exhibited considerable intercellular differences in the densities of immunostaining. The various degrees of synaptophysin immunoreactivities in pinealocytes were not correlated with the densities of NSE immunostaining. Nerve terminals and varicosities displayed stronger immunoreactivities than pinealocytes. They were particularly numerous in the perivascular spaces. It is not clear whether this distribution indicates an innervation of pineal capillaries in addition to the functionally important innervation of pinealocytes. Several highly p38-positive dots of variable size were a conspicuous feature throughout the gland. By the consecutive semithin-thin section technique, they could be identified as processes of pinealocytes, filled with accumulations of small clear vesicles. Obviously, these vesicles represent the major site of synaptophysin immunoreactivity in pinealocytes. In the gerbil, similar vesicles have been ascribed a role in the secretory activity of the gland, and/or in the transport of calcium. The intercellular differences in the degrees of p38 immunostaining may, therefore, reflect different states of a specific cellular activity. The presence of synaptophysin in pinealocytes of the normal pineal, including the deep portions of the gland, emphasizes the paraneuronal character of these cells.