Proteinoids, also known as thermal proteins, possess a fascinating ability to generate microspheres that exhibit electrical spikes resembling the action potentials of neurons. These spiking microspheres, referred to as protoneurons, hold the potential to assemble into proto-nanobrains. In our study, we investigate the feasibility of utilizing a promising electrochemical technique called differential pulse voltammetry (DPV) to interface with proteinoid nanobrains. We evaluate DPV's suitability by examining critical parameters such as selectivity, sensitivity, and linearity of the electrochemical responses. The research systematically explores the influence of various operational factors, including pulse width, pulse amplitude, scan rate, and scan time. Encouragingly, our findings indicate that DPV exhibits significant potential as an efficient electrochemical interface for proteinoid nanobrains. This technology opens up new avenues for developing artificial neural networks with broad applications across diverse fields of research.