Dynamic causal modeling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance-based models that are used in DCM. These models are expressed in terms of sets of differential equations that allow one to model the synaptic underpinnings of connectivity. We describe early developments using neural mass models, where convolution-based dynamics are used to generate responses in laminar-specific populations of excitatory and inhibitory cells. We show that these models, though resting on only two simple transforms, can recapitulate the characteristics of both evoked and spectral responses observed empirically. Using an identical neuronal architecture, we show that a set of conductance based models-that consider the dynamics of specific ion-channels-present a richer space of responses; owing to non-linear interactions between conductances and membrane potentials. We propose that conductance-based models may be more appropriate when spectra present with multiple resonances. Finally, we outline a third class of models, where each neuronal subpopulation is treated as a field; in other words, as a manifold on the cortical surface. By explicitly accounting for the spatial propagation of cortical activity through partial differential equations (PDEs), we show that the topology of connectivity-through local lateral interactions among cortical layers-may be inferred, even in the absence of spatially resolved data. We also show that these models allow for a detailed analysis of structure-function relationships in the cortex. Our review highlights the relationship among these models and how the hypothesis asked of empirical data suggests an appropriate model class.
HighlightsA brief treatment of dynamic coordination in terms of predictive coding.Understanding synchronous message passing in terms of hierarchical predictive coding.Characterising cortical gain control with the dynamic causal modelling of neural fields.Characterising pathophysiological oscillations with dynamic causal modelling of neural masses.
The aim of this paper is twofold: first, to introduce a neural field model motivated by a well-known neural mass model; second, to show how one can estimate model parameters pertaining to spatial (anatomical) properties of neuronal sources based on EEG or LFP spectra using Bayesian inference. Specifically, we consider neural field models of cortical activity as generative models in the context of dynamic causal modeling (DCM). This paper considers the simplest case of a single cortical source modeled by the spatiotemporal dynamics of hidden neuronal states on a bounded cortical surface or manifold. We build this model using multiple layers, corresponding to cortical lamina in the real cortical manifold. These layers correspond to the populations considered in classical (Jansen and Rit) neural mass models. This allows us to formulate a neural field model that can be reduced to a neural mass model using appropriate constraints on its spatial parameters. In turn, this enables one to compare and contrast the predicted responses from equivalent neural field and mass models respectively. We pursue this using empirical LFP data from a single electrode to show that the parameters controlling the spatial dynamics of cortical activity can be recovered, using DCM, even in the absence of explicit spatial information in observed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.