Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate.
Visual cortical areas subserve cognitive functions by interacting in both feedforward and feedback directions. While feedforward influences convey sensory signals, feedback influences modulate feedforward signaling according to the current behavioral context. We investigated whether these interareal influences are subserved differentially by rhythmic synchronization. We correlated frequency-specific directed influences among 28 pairs of visual areas with anatomical metrics of the feedforward or feedback character of the respective interareal projections. This revealed that in the primate visual system, feedforward influences are carried by theta-band (∼ 4 Hz) and gamma-band (∼ 60-80 Hz) synchronization, and feedback influences by beta-band (∼ 14-18 Hz) synchronization. The functional directed influences constrain a functional hierarchy similar to the anatomical hierarchy, but exhibiting task-dependent dynamic changes in particular with regard to the hierarchical positions of frontal areas. Our results demonstrate that feedforward and feedback signaling use distinct frequency channels, suggesting that they subserve differential communication requirements.
Oscillatory neuronal activity may provide a mechanism for dynamic network coordination. Rhythmic neuronal interactions can be quantified using multiple metrics, each with their own advantages and disadvantages. This tutorial will review and summarize current analysis methods used in the field of invasive and non-invasive electrophysiology to study the dynamic connections between neuronal populations. First, we review metrics for functional connectivity, including coherence, phase synchronization, phase-slope index, and Granger causality, with the specific aim to provide an intuition for how these metrics work, as well as their quantitative definition. Next, we highlight a number of interpretational caveats and common pitfalls that can arise when performing functional connectivity analysis, including the common reference problem, the signal to noise ratio problem, the volume conduction problem, the common input problem, and the sample size bias problem. These pitfalls will be illustrated by presenting a set of MATLAB-scripts, which can be executed by the reader to simulate each of these potential problems. We discuss how these issues can be addressed using current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.